
Mining Contiguous Sequential Patterns from Web Logs
Jinlin Chen

Computer Science Dept.
Queens College, CUNY

Flushing, NY, 11367, USA
Tel: 001-718-997-3497

jchen@cs.qc.edu

Terry Cook
Computer Science Dept.
Graduate Center, CUNY

New York, NY, 10016, USA

Terrycookd1@aol.com

ABSTRACT
Finding Contiguous Sequential Patterns (CSP) is an important
problem in Web usage mining. In this paper we propose a new
data structure, UpDown Tree, for CSP mining. An UpDown Tree
combines suffix tree and prefix tree for efficient storage of all the
sequences that contain a given item. The special structure of
UpDown Tree ensures efficient detection of CSPs. Experiments
show that UpDown Tree improves CSP mining in terms of both
time and memory usage comparing to previous approaches.

Categories and Subject Descriptors
E.1 [Data]: Data Structures - Trees; H.2.8 [Database
Management]: Data Mining

General Terms: Algorithms, Performance,
Experimentation, Theory.

Keywords: Web usage mining, sequential pattern, contiguous
sequential pattern

1. INTRODUCTION
Web usage mining provides useful information for many
applications. One major technique for Web usage mining is
sequential pattern (SP) mining which discovers user navigational
patterns. In practice, contiguous sequential pattern (CSP, a
variation of SP in which the items appearing in a sequence that
contains the pattern must be adjacent with respect to the
underlying ordering.) is more effective comparing to SP for
applications such as Web recommendation/personalization [4].
Mining CSPs from Web logs can be taken as SP mining under
two constraints. First, each element in a sequence consists of only
one item. Second, items appearing in a sequence that contains a
pattern must be adjacent with respect to the underlying order as
defined in the pattern. Most previous approaches do not address
the problem specifically, but instead they apply a general
constraint description framework to solve the problem, which is
inefficient due to the large searching space and inefficient data
structures. In this paper a new data structure, UpDown Tree, is
invented for CSP mining. An UpDown Tree combines suffix tree
and prefix tree for efficient storage of all the sequences that
contain a given item. The special structure of UpDown Tree
ensures efficient detection of CSPs. Experiments show the
effectiveness of UpDown Tree based CSP mining.

2. MINGING CSP USING UPDOWN TREE
Let P = {p1, … pn} be a set of items (Web page Ids), an access
sequence AS = (as1, …, asm) is an ordered list of page Ids, where

asi ∈ P, i ∈ {1, …, m}. An AS a = (a1, a2, … , aj) is a
contiguous sub-AS of another AS b = (b1, b2, … , bk), k ≥ j, if
there exists an integer i, 1 ≤ i ≤ k-j+1, such that a1 = bi, a2 = bi+1, .
. . , aj = bi+j-1. In this case a is called contained in b, denoted as a
⊆ b. A Web access sequence database (WASD) is a set of ASs
{S1, S2, …, Su}, where Si is an AS. The support of an AS S in
WASD is defined as SupWASD(S)= |{ Si |S⊆ Si }| / u. Given a
positive value minSup as the support threshold, S is called a
contiguous sequential pattern (CSP) in WASD if SupWASD(S) ≥
minSup. A CSP with length l is called an l-CSP.

Problem Statement. Given a WASD and the minSup threshold,
CSP mining is to find the complete set of CSPs in the database.

2.1 Concept of UpDown Tree
Our goal is to find a data structure that supports efficient CSP
mining in terms of both memory and time. Below we propose a
special data structure, UpDown Tree, for this purpose.

Table 1 shows some example ASs. To detect CSPs containing an
item, say 3, we need identify all the sequences that contain 3.
Observing a sequence that contains 3, we know that it can be
divided into two subsequences before/after 3 (the full prefix/suffix
of 3). The full suffixes of 3 can be efficiently stored using a suffix
trie. We call this trie a Down Trie because its root node is at the
first level. For each full suffix of 3 we add its sequence Id to the
Id set of the node in the Down Trie corresponding to the last item
of the full suffix. The Down Trie can be further compressed into a
Down Tree based on the concept of Patricia Tree [3] by merging a
node with its parent if the node is the only child of its parent and
the node has an empty Id set. Similarly, we can represent all the
full prefixes of 3 with an Up Trie and compress the Up Trie into
an Up Tree. The root node of the Up Tree is at the lowest level.

Table 1. Some example access sequences

Seq. Id AS Full prefix of 3 Full suffix of 3

1 3 3 3

2 5 8 3 4 2 5 8 3 3 4 2

3 2 5 8 3 4 2 2 5 8 3 3 4 2

4 2 5 3 4 7 2 5 3 3 4 7

5 7 5 3 5 4 7 5 3 3 5 4

Since Up and Down Tree share the same root, they are integrated
into an UpDown Tree as shown in Fig. 1. To detect all the CSPs
that include 3, intuitively, any such CSP corresponds to a path in
the UpDown Tree that starts at a node in the Up Tree. Thus we
can decompose the problem into finding all the CSPs starting at
any node in the Up Tree, which can be efficiently solved as

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Poster Paper Topic: Search

1177

described in Algorithm 1 below. Taking a depth first order to
detect CSPs starting from every node in the Up Tree, we can
implement a top down approach for CSP mining which is more
efficient than traditional bottom up approach because it eliminates
unnecessary candidate checking based on Apriori rule [1].

Figure 1. An example UpDown Tree.

2.2 UpDown Tree based CSP Mining
Problem partitioning. Let {<x1>, < x2>, …, <xt>} be the
complete set of 1-CSPs in a WASD, x1 < x2 < … < xt., based on
apriori rule [1], any CSP only contains items in the set of {x1, x2,
…, xt}. Given the set of all the CSPs, first we create t empty sets.
We then remove all the CSPs that contain xt from the CSP set to
set t, and in the resulted CSP set we remove all the CSPs that
contain xt-1 to set t-1, …. We continue this process until removing
all the CSPs that contain x1 from the CSP set to set 1. Now the
original CSP set is empty. In this way we partition the CSP set
into t disjoint set, and set i (1 ≤ i ≤ t) is the set of CSPs that
contains xi and items smaller than xi.

Algorithm 1 Detecting all the CSPs that contain an item xi.

Input/output: UpDown Tree of xi/All the CSPs that contain xi

Method: 1) Create an empty CSP set for xi. For each node k in the
Up Tree in depth first order,

1.1) Create an empty CSP leaf set and get the ending nodes of all
sequences in the Id set of k in the Down Tree. For each ending
node, put the Ids of all the sequences that end at it in its endIdSet;

1.2) Enqueue each ending node into a priority queue based on the
descending order of its height in the Down Tree;

1.3) Dequeue nodes in the priority queue until the queue is empty.
For each dequeued node m, if the size of its endIdSet is no less
than minSup, add m to CSP leaf set, otherwise join its endIdSet to
its parent’s endIdSet and enqueue the parent if m is not the root.

1.4) For each node j in the CSP leaf set, create a CSP by
concatenating the key d-gaps of the nodes in the path from k to j,
and add the CSP to CSP set;

1.5) For the sequences that are not counted towards the support of
any CSP, add their Ids to the Id set of k’s parent node. �

Detecting all the CSPs of a WASD Following the problem
partitioning strategy discussed above, first we create an
occurrence set for each frequent item. Then for each frequent item
xi in descending order, we first find all the CSPs containing xi (set
i) using Algorithm 1. Then for each smaller item j in the CSPs
detected, we remove its corresponding occurrences from its
occurrence set to simplify CSP detection for set j.

3. EXPERIMENT RESULTS
Experiments were performed on a 1.8G Hz Pentium-M Laptop
with 1 GB memory. We compare our approach with
GenPrefixScan which is among the best ones for SP mining with
gap constraints [2]. The testing datasets are generated by
AssocGen [1], a standard data set generator for SP mining. The
datasets contain 50-500K sequences (D) and 10,000 different
items. The average length of sequences is 50. The average length
of patterns is set to 8, and the number of patterns is set to 5000.

Fig. 2 (a) shows experiment results on time usage. Both
approaches scale up linearly as D increases. UpDown Tree
outperforms GenPrefixScan by a factor of more than 5. Fig. 2(b)
shows experiment results on memory usage. UpDown Tree
approach scales up sub-linearly as D increases. GenPrefixScan
approach scales up more than linearly. Both have similar memory
usage when D is small. As D is increased to 500K, UpDown Tree
outperforms GenPrefixScan by a factor of more than 5.

0
200
400
600
800

1000

50 100 150 200 250 300 350 400 450 500
Sequence numbers ('000s)

(a
) T

im
e
(s
) GenPrefixScan UpDownTree

0

10

20

30

40

50 100 150 200 250 300 350 400 450 500
Sequence numbers ('000s)

(b
) M

em
or

y
 (M

B) GenPrefixScan UpDownTree

Figure 2. Time/memory usage on different sequence numbers.

The reasons that our approach performs better is as follows, (1)
The top down approach of our method eliminates unnecessary
candidate checking by detecting the longest CSP first; (2) Instead
of storing each sequence separately, UpDown Tree compresses
the full prefixes/suffixes of each item and merges some certain
nodes with their children, both can effectively reduce memory
consumption.

4. CONCLUSIONS
In this paper a new data structure, UpDown Tree, is invented to
solve the problem of Web log CSP mining. Experiment results
show that UpDown Tree based approach performs much better in
terms of both time and memory comparing to GenPrefixSpan, one
of the best existing approaches for CSP mining.

5. REFERENCES
[1] Agrawal R. and Srikant R. Mining sequential patterns. In

Proceedings ICDE'95 (1995). 3-14.

[2] Antunes C. and Oliveira A. L. Sequential pattern mining
algorithms: Trade-offs between speed and memory. In 2nd
Workshop on Mining Graphs, Trees and Seq. (2004).

[3] Morrison D.R. Practical Algorithm to Retrieve Information
Coded in Alphanumeric. J. ACM, 15 (1968), 514-534.

[4] Nakagawa M. and Mobasher B. A Hybrid Web
Personalization Model Based on Site Connectivity. In
WEBKDD 2003 (2003). 59-70.

WWW 2007 / Poster Paper Topic: Search

1178

